有时候图片太大了占内存很烦,本来手机内存也就那么点,放一个图片稍微大一点的,都不能放一个成百上千张,这不是很烦嘛。于是,这又让我来灵感了,既然图片给了我难题,那么我就来接受这样的挑战。所以,我决定用python来试试可不可以压缩图片,居然一试就成功了,分享出来给大家。
dynamic_quality.py import PIL.Image from math import log from SSIM_PIL import compare_ssim # pip install SSIM-PIL from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def get_ssim_at_quality(photo, quality): """ Return the ssim for this JPEG image saved at the specified quality """ ssim_photo = "tmp.jpg" # optimize is omitted here as it doesn't affect # quality but requires additional memory and cpu photo.save(ssim_photo, format="JPEG", quality=quality, progressive=True) ssim_score = compare_ssim(photo, PIL.Image.open(ssim_photo)) return ssim_score def _ssim_iteration_count(lo, hi): """ Return the depth of the binary search tree for this range """ if lo >= hi: return 0 else: return int(log(hi - lo, 2)) + 1 def jpeg_dynamic_quality(original_photo): """ Return an integer representing the quality that this JPEG image should be saved at to attain the quality threshold specified for this photo class. Args: original_photo - a prepared PIL JPEG image (only JPEG is supported) """ ssim_goal = 0.9 #the original value is 0.95 hi = 35 #the original value is 85 lo = 30 #the original value is 80 # working on a smaller size image doesn't give worse results but is faster # changing this value requires updating the calculated thresholds photo = original_photo.resize((200, 200)) # if not _should_use_dynamic_quality(): # default_ssim = get_ssim_at_quality(photo, hi) # return hi, default_ssim # 95 is the highest useful value for JPEG. Higher values cause different behavior # Used to establish the image's intrinsic ssim without encoder artifacts normalized_ssim = get_ssim_at_quality(photo, 10) selected_quality = selected_ssim = None # loop bisection. ssim function increases monotonically so this will converge for i in range(_ssim_iteration_count(lo, hi)): curr_quality = (lo + hi) // 2 curr_ssim = get_ssim_at_quality(photo, curr_quality) ssim_ratio = curr_ssim / normalized_ssim if ssim_ratio >= ssim_goal: # continue to check whether a lower quality level also exceeds the goal selected_quality = curr_quality selected_ssim = curr_ssim hi = curr_quality else: lo = curr_quality if selected_quality: return selected_quality, selected_ssim else: default_ssim = get_ssim_at_quality(photo, hi) return hi, default_ssim
test.py
from PIL import Image from dynamic_quality import * def compress(filename,originpath,targetpath): name = filename.rstrip('.png').rstrip('.jpg') im = Image.open(originpath+filename) # print(im.format,im.size,im.mode) im = im.convert('RGB') im.format = "JPEG" new_photo = im.copy() new_photo.thumbnail(im.size,resample=Image.ANTIALIAS) save_args = {'format':im.format} # print(save_args) # if im.format=='JPEG': # save_args['quality']=20 save_args['quality'],value=jpeg_dynamic_quality(im) save_args['optimize']=True save_args['progressive=True']=True # print("JPEG Quality Changed") # elif im.format=='PNG': # save_args['format']='JPEG' # save_args['quality']=5 # print("PNG Quality Changed") new_photo.save(targetpath+name+".jpg",**save_args) if __name__ == '__main__': import os originpath = "D:\\images\\img\\" # 需要压缩图片路径 targetpath = "D:\\images\\dangdang_image\\" # 压缩完图片路径 for root, dirs, files in os.walk(originpath): for file in files: compress(file,originpath,targetpath)